

Corbettmaths primary

Angles in a Triangle

Tips

- Read each question carefully
- · Attempt every question.
- · Check your answers seem right.
- Always show your workings

Recap

Remember

 There are daily questions found at www.corbettmathsprimary.com/5-a-day/

1. Calculate the size of angle x in this diagram

0

2. Calculate the size of angle x in this diagram

3. Calculate the size of angle x in this diagram

0

4. Calculate the size of angle x in this diagram

0

5. Here is an isosceles triangle.

Calculate the size of angle \times in this diagram

6. Here is an isosceles triangle

Calculate the size of angle \boldsymbol{x} in this diagram

7. Here is an isosceles triangle.

Calculate the size of angle \boldsymbol{x} in this diagram

0

8. Here is an equilateral triangle.

Find the size of each angle, y.

9. Find the size of each angle x in the diagram below

0

10. Find the size of each angle x in the diagram below

11. Find the size of each angle x in the diagram below

0

12. Find the size of each angle x in the diagram below

0

13. Find the size of each angle x in the diagram below

0

14. Rosie has four **different** triangles.

Complete the table to show the size of the angles in each triangle

Type of Triangle	Angle 1	Angle 2	Angle 3
Scalene	20°		
Right-angled	70°		
Isosceles	50°		
Isosceles	50°		

15. Here are four identical isosceles triangles.

Find the size of each angle \boldsymbol{x} in the diagram below